South American Sea Lion - Otaria byronia
( de Blainville, 1820 )

 

 

No Map Available

Warning: Undefined property: stdClass::$Photo1 in /var/www/vhosts/virtualzoo/classifications/display.php on line 584
No Photo Available No Map Available

Subspecies: Unknown
Est. World Population: 222500

CITES Status: NOT LISTED
IUCN Status: Least Concern
U.S. ESA Status: NOT LISTED

Body Length:
Tail Length:
Shoulder Height:
Weight:

Top Speed:
Jumping Ability: (Horizontal)

Life Span: in the Wild
Life Span: in Captivity

Sexual Maturity: (Females)
Sexual Maturity: (Males)
Litter Size:
Gestation Period:

Habitat:
South American Sea Lions are stocky, heavy-bodied otariids that are strongly sexually dimorphic (Cappozzo 2002). Adult males reach 2.1-2.6 m in length and weights of 300-350 kg; females reach 1.5-2 m and 170 kg (Grandi et al. 2012a, Rosas et al. 1993, Cappozzo and Perrin 2009, Riet-Sapriza et al. 2013). At birth, pups weigh 11-15 kg and are 75-85 cm long. Pups are born black above and paler below, often with grayish-orange tones on the undersides. They undergo their first molt 1-2 months after birth, becoming dark brown. This color fades during the rest of the first year to a pale tan to light brown, with paler areas on the face (Vaz-Ferreira 1975).

Sexual maturity is attained at 4-5 years for females and 4-7 years for males, but males cannot hold and defend a territory and maintain a harem until they reach 9-11 years old (Grandi et al. 2012a, Vaz-Ferreira 1982). Gestation lasts about one year. Longevity is considered to be about 20 years. Mortality rates for adults are unknown (Reijnders et al. 1993). Pup mortality estimated for some Peruvian colonies ranged from 13% before ENSO events to 100% during ENSO, and was negatively correlated with prey availability (Soto et al. 2004).

Breeding takes place during the austral summer, starting in mid-December. The start of the breeding season varies somewhat by location and latitude, with longer seasons occurring at low latitudes and shorter seasons occurring further south at high latitudes (Campagna 1985, Soto 1999). At most breeding sites, both sexes arrive in mid-December, with peak numbers of males and females ashore during the second half of January. Females give birth to a single pup, 2-3 days after their arrival at the rookeries, and remain onshore to nurse for approximately 7 days. Pups are born from mid-December to early February, with a peak in mid-January, coinciding with the timing of peak numbers of females ashore. Estrous occurs 6 days after parturition, and females make their first foraging trip 2-3 days after estrous. From this point on, a cycle of foraging and pup attendance starts and lasts until pups are weaned at 8-10 months old (Ponce de León and Pin 2006, Vaz-Ferreira 1982). As is the case for many Sea Lions, it is not unusual for females to continue to care for a yearling while they are nursing a new pup, as lactation can be extended up to three years although that is rarely observed (Campagna and Le Boeuf 1988a, Soto 1999). In Chile, pups gather in large pods on the rookeries while waiting for their mothers to return from 1-4 day long foraging trips. Females usually stay ashore for 1-2 days between trips (Muñoz et al. 2011). In Uruguay, trips have an average duration of 1.5±0.9 days and visits ashore are 1.1±0.8 days (Riet-Sapriza et al. 2013).

South American Sea Lions are a highly polygynous species. Social groups are composed by a dominant male and 4-10 adult females, although some solitary couples are found. This variation in female numbers depends on the various strategies employed by males and females during the breeding season that are related to colony substrate, thermoregulatory requirements imposed by weather conditions at the site, or avoidance of male harassment (Vaz-Ferreira 1982; Campagna and Le Boeuf 1988b; Cassini 1999, 2000; Cappozzo et al. 2008; Franco-Trecu et al. 2015). In Argentina, adult males tend to establish territories through vocalizing, posturing, and fighting when rookeries provide shade, have tidal pools that can be used for cooling, or funnel interior areas through narrow beaches between rocks or ledges to the sea. At more homogeneous locations with long shorelines, the male strategy focuses on identifying, defending, and controlling individual females in estrous, wherever they are found. Bulls actively and aggressively work to keep estrous females close to them by grabbing, dragging, and throwing them back inland, away from the shoreline (Campagna and Le Boeuf 1988b). On the Peruvian coast a lek-like mating system has been described in which males maintain positions along the shoreline where females pass each day (Soto and Trites 2011). According to these authors, the daily movements of females toward the water accentuate the difficulty for males to monopolize females and thus males are not able to defend females. In Uruguay, researchers combining behavioural and molecular data found that the reproductive behaviour actually involves the coexistence of two types of polygyny each occurring in different parts of the same rookery (Isvaran 2005, Taborsky et al. 2008). On one hand, males at the tide line monopolize relatively stable groups of females (female-defense polygyny) within floating territories (i.e., a territory that changes position over time) whose locations change with the tidal variation at the study site (Wilson 1975, Alcock et al. 1978, Barrows 1983). On the other, males at the internal pools defend fixed territories (defined as territory having a stable location during the tenure by its holder (Dewsbury 1978) and established a resource-defense polygyny (Emlen and Oring 1977).

At sea, South American Sea Lions frequently raft alone or in small to large groups. They have been reported in association with feeding cetaceans and seabirds (Duffy 1983). On the Atlantic coast most lactating females have been described as benthic divers and forage in shallow water within the continental shelf. Mean depth of dives at Isla Lobos, Uruguay, were 15-25 m and they lasted 1.0-2.5 minutes (Riet-Sapriza et al. 2013), and females from northern Patagonian rookeries made dives in the range of 2-30 m lasting < 4 minutes (Campagna et al. 2001). However, high levels of variability in foraging patterns have been found, as some lactating females from northern Patagonia and the Falkland Islands also behave as pelagic predators (Werner and Campagna 1995, Thompson et al. 1998, Campagna et al. 2001). The deepest dives recorded for female South American Sea Lions (>60 m) off Patagonia, Argentina, are similar to the depth of the shelf in that area (Campagna et al. 2001). Other deep dives of 100 m have been recently recorded in individuals off the coast of Argentina by Drago, Crespo and Franco-Trecu (unpublished data).

Adult male South American Sea Lions have been observed to reach distances of more than 300 km from the coast, both in Argentinean and Chilean waters (Campagna et al. 2001, Hückstädt and Krautz 2004). Juvenile Sea Lions in central Chile rarely ventured into offshore waters, reaching a mean distance from the coastline of 20 km, with a maximum of only 80 km. They show a clear pattern of epipelagic foraging, with dives usually shallower than 20 m, but sometimes reaching depths of 240 m (Hückstädt et al. 2014). ).  In southern Chile a mesopelagic foraging behavior has been described, with mean dive depths of 100-120 m lasting 2.0-2.5 minutes, with a maximum depth of 320 m and duration of 5 minutes (Sepúlveda et al. in preparation).  Hückstädt and Krautz (2004) observed Southern Sea Lions in the Pacific Ocean in association with a fleet fishing for Jack Mackerel (Trachurus symmetricus) outside the continental shelf, suggesting different behavior than that observed in the Atlantic Ocean, where the diving pattern is likely related to the depth of the continental shelf (Werner and Campagna 1995, Thompson et al. 1998, Campagna et al. 2001, Riet-Sapriza et al. 2013).

South American Sea Lions are considered non-migratory, although many individuals make seasonal movements away from rookeries during the non-breeding season (Rosas et al. 1994), and some southerly locations such as the Falkland Islands are largely abandoned during the winter. Although there are no breeding colonies in Brazil, many Sea Lions are found there throughout the year, grouped in specific places to rest (Refúgio de Vida Silvestre da Ilha dos Lobos, Torres – 29°20’S and Refúgio de Vida Silvestre Molhe Leste, São José do Norte – 32º11’S), or swimming in coastal waters in winter and spring months. Since many Sea Lions make seasonal movements away from their reproductive colonies in search of feeding grounds, it has been suggested that individuals in Brazil come from the breeding colonies off Uruguay after their breeding period (Rosas et al. 1994, Pinedo 1990). Among the continental and island colonies of the Argentine coast there is evidence of seasonal movements (Lewis and Ximénez 1983; Giardino et al. 2008, 2009). Animals that reproduce at Península Valdés (northern Argentine Patagonia) move to Uruguay and vice versa (Szapkievich et al. 1999).

As generalist feeders, South American Sea Lions take a wide variety of prey that varies by location. Their diet includes many species of benthic and pelagic fishes and invertebrates, some of them of commercial value. Forty-one prey species (including fishes, cephalopods, crustaceans, gastropods, polychetes, sponges, and tunicates) were identified in stomach contents of individuals found dead on beaches and from animals recovered in incidental catch of the fisheries of the Patagonian continental shelf (Koen Alonso et al. 2000). The most important items were Argentine Hake (Merluccius hubbsi), Red Octopus (Enteroctopus megalocyathus), Argentine Shortfin Squid (Illex argentinus), Raneya (Raneya brasiliensis), Patagonian Squid (Loligo gahi) and Argentine Anchovy (Engraulis anchoita). Differences in diet were found between sexes. Females fed mostly on coastal and benthic species, like Red Octopus and Argentine Shortfin, whereas males fed mostly on demersal-pelagic species, such as Argentine Hake and Patagonian Squid (Crespo et al. 1997, Koen Alonso et al. 2000). As expected from differences in body mass, Sea Lion males from northern Patagonia had been reported to exploit benthic and deeper foraging grounds than females (Campagna et al. 2001, Drago et al. 2009), although differences in foraging habits between the sexes are not constant over time (Drago et al. 2009). In Uruguay, carbon and nitrogen stable isotope values of skin and bone were used to infer the trophic relationships between the sexes during the pre-breeding period and year round. The study revealed that male and female Sea Lions used a variety of foraging strategies throughout the year and that no differences existed between the sexes. However, the diversity of foraging strategies was strongly reduced in both sexes during the pre-breeding period, when all individuals increased their consumption of pelagic prey over benthic prey, and isotopic niche space of males and females did not overlap at all (Drago et al. 2015). These results indicate that sexual foraging segregation only takes place during the pre-breeding season, when crowding in the areas surrounding the breeding rookeries increases and per-capita resource availability declines. At Isla de Lobos, Uruguay, the most abundant prey species during summer are cephalopods (Family Omastrephidae) and Striped Weakfish (Cynoscion guatucupa). However, the principal contribution by biomass is accounted by Whitemouth Croaker (Micropogonias furnieri), Large Head Hairtail (Trichiurus lepturus), Brazilian Codling (Urophysis brasiliensis), and Argentine Croaker (Umbrina canosai) (Riet-Sapriza et al. 2013). In Peru, Sea Lions prey mostly on Anchoveta (Engraulis ringens), Mote Sculpin (Normanichthys crockeri), Lumptail Searobin (Prionotus stephanophrys), Peruvian Hake (Merluccius gayi), Red Squat Lobster (Pleuroncodes monodon), and cephalopods (Fam. Loliginidae) (Paredes and Arias Schreiber 1999).

In Chile, temporal and spatial diet plasticity was found by Muñoz et al. (2011). In northern Chile the main prey species for South American Sea Lions are Anchovy, Patagonia Squid (Loligo gahi), Cabinza Grunt (Isacia conceptionis), and Corvina (Cilus gilberti). In central Chile the main prey are South Pacific Hake (Merluccius gayi gayi), Snoek (Thyrsites atun), and Araucanian Herring (Strangomera bentinckii), whereas in southern Chile the main species were the Chilean Jack Mackerel (Trachurus murphyi) and Snoek. In southern Chile farmed-raised salmonids are also important in the diet, suggesting that South American Sea Lions are capable of modifying their dietary habits in response to variation in abundance and/or accessibility of prey (Muñoz et al. 2011, Sepúlveda et al. 2015).

Diet and maternal care patterns reflect inter-annual fluctuations in food availability. In the unpredictable Peruvian upwelling ecosystem, females appeared to adjust their diets and maternal attendance patterns in response to annual changes in the abundance and distribution of prey (Soto et al. 2006). Short times onshore nursing and prolonged times at sea foraging are observed in Peru during ENSO events when prey are not abundant near the rookeries. As a result, the fasting ability of pups may be exceeded causing high mortality due to starvation (Soto et al. 2004, 2006). A larger diversity of prey species (particularly of demersal fishes) is consumed during ENSO, when Anchovy and Squat Lobster are less available. These observations suggest that South American Sea Lions may be good indicators of relative changes in the distribution and abundance of marine resources.

A small percentage of sub-adult and adult male South American Sea Lions regularly attack and kill South American Fur Seal (Arctocephalus australis) pups in Peru (Harcourt 1993), Argentina (Campagna et al. 1988b), and in Uruguay (Franco-Trecu, pers. comm). In Peru, attacks occurred more frequently in the nonbreeding season, when Fur Seal males are not actively defending the breeding colony (Harcourt 1993). Adult or sub-adult male Sea Lions hunt alone and focus their attacks on Fur Seal pups and juveniles up to two years of age that are consumed when caught. Sub-adult males also attack, but tend to abduct Fur Seals to serve as female Sea Lion substitutes, herding them and attempting to mate with them, usually killing them in the process. Sub-adults never consumed the pups they abducted (Harcourt 1991, 1992, 1993). Sea lions directly increase pup mortality when they take and kill young Fur Seal pups. These actions also indirectly increase mortality by creating disturbances on the beaches. When Sea Lions enter a beach with Fur Seals severe localized disturbances occur, animals in the immediate vicinity will stampede, and separations of mother-pup pairs are frequent. Pups may be crushed by older animals, or by rocks dislodged by the stampede. Although rare, Sea Lions will also kill adult female Fur Seals, and if the female has a pup it will then die of starvation (Harcourt 1992). Sea Lions have been observed killing young Southern Elephant Seals (Mirounga leonina) at the Falkland Islands. They are also known to take several species of Penguins, but the importance of Penguins in the diet is unknown (Boswall 1972, Strange 1982, Raya Rey et al. 2012). Sea Lions have also been recorded preying on Sea Turtles in Peru and northern Chile (Hückstädt pers. comm., Cárdenas-Alayza unpublished data).

Predators of South American Sea Lions include Killer Whales (Orcinus orca) (Grandi et al. 2012b), Sharks (Crespi Abril et al. 2004), and possibly Leopard Seals (Hydrurga leptonyx) and Puma (Puma concolor). Puma tracks have been observed on a rookery in Patagonia and remains of Sea Lions have been found in a cave used by a Puma in the area. At the well known rookery of Punta Norte at Península Valdés, Killer Whales are known to surf in on waves partially beaching themselves while grabbing predominantly young Sea Lions off the shoreline.

Range:
South American Sea Lions are widely distributed, occurring more or less continuously from northern Peru south to Cape Horn, and north up the east coast of the continent to southern Brazil (Vaz-Ferreira 1982, Crespo 1988, Crespo et al. 2012). They also occur in the Falkland (Malvinas) Islands. The northernmost breeding location on the Pacific side is Zorritos, Peru (03º40’S; Crespo et al. 2012), although some individuals have been found in Ecuador and Colombia (Félix et al. 1994, Capella et al. 2002). On the Atlantic side they can be found from Tierra del Fuego to the coastal island Ilha dos Lobos in Torres in southern Brazil (29º20’S); but individuals have been seen as far north as Río de Janeiro (Vaz-Ferreira 1982, Pinedo 1990, Rosas et al. 1993). No breeding colonies occur in Brazil, so individuals there come from the breeding colonies in Uruguay after their breeding period (Rosas et al. 1994, Pinedo 1990, Oliveira 2013). Therefore, the northernmost breeding rookery in the Atlantic is on the Uruguayan coast at Isla Verde and Isla La Coronilla (33°56'S 53°29'W), east of Cabo Polonio (34º24’S) (Vaz-Ferreira 1975). On the Atlantic coast, the species shows a patchy distribution of breeding activity that has not varied in the last 60 years (Túnez et al. 2008). Breeding colonies aggregate in three areas, the Uruguayan coast, north-central Patagonia, and southern Tierra del Fuego. Breeding activity is absent, or nearly absent, in two large segments of coast, the coast of Buenos Aires Province and southern Patagonia (Túnez et al. 2008). The lack of breeding colonies in Buenos Aires Province appears to be related to the large scale pattern of human settlement occurred at the end of the 19th century. In contrast, the low number of breeding colonies in southern Patagonia is probably due to the effect of extreme variations in tidal range that produce great fluctuations in the coastline location making it difficult for the Sea Lions to access the water (primarily an issue during the breeding season). In north-central Patagonia, the segment of coast with the highest number of Sea Lions is in Argentina. The distribution of colonies there is associated with availability of islands and is negatively correlated with places where anthropogenic disturbance is high. At the local scale, breeding colonies are positively associated with slightly sloping coasts and negatively associated with rocky beaches (Túnez et al. 2008).

South American Sea Lions are primarily a neritic species, found in waters over the continental shelf and slope. Males can travel more than 320 km from the coast (Campagna et al. 2001, Crespo et al. 2007, Hückstädt et al. 2014) as well along the Argentine coast Giardino et al. (2014), suggesting that they have a main role in the gene flow among colonies. This species ventures into fresh water and can be found around tidewater glaciers and in rivers (Schlatter 1976). Vagrants have been found as far north as 13°S, near Bahia, Brazil and in Ecuadorian and Colombian waters (Félix et al. 1994, Capella et al. 2002).

Conservation:
South American Sea Lions are protected and managed by laws in most of the countries where they occur. Sea lions have also been afforded protection by the establishment of numerous reserves and protected areas at rookeries and haul out sites, especially in Argentina. However, enforcement of protective regulations is weak in most of the distribution range, particularly in the most isolated areas and at sea. In Peru it is illegal to poach, export, or transport South American Sea Lions for commercial purposes (Decreto Supremo No. 013-99-AG). After the population decline that followed the 1997-1998 ENSO led to the South American Fur Seals being categorized as in danger of extinction in Peru (Decreto Supremo No. 034-2004-AG), Sea Lions in Peru were re-categorized as Vulnerable (Decreto Supremo No. 004-2014-MINAGRI). In Chile, the South American Sea Lion is the only marine mammal species that is considered a productive resource and thus is suitable for exploitation. Since 2004 and for five years there has been a moratorium that could be lifted if the interaction with fisheries is shown to be detrimental to the fisheries. In 2006, for the first time, a Sea Lion harvest quota was established for the aboriginal populations of the Magallanes region, thus helping with the conservation of their traditions. Finally, in 2008 the capture of live Sea Lions was authorized for exhibitions, as well as the capture of animals dangerous to human health (Oliva et al. 2008). The moratorium has been renewed since 2004 and exploitation is currently banned in Chile. In Uruguay, the South American Sea Lion was declared a priority species for conservation by the SNAP (National System of Protected Areas) and was named as a focal object of conservation in the Marine Protected Area of Cabo Polonio. Since 2011, a community-based participatory research program (POPA) is being developed where the use of pound nets is evaluated to mitigate the interaction between Sea Lions and artisanal fishing in Piriápolis (Bentancour et al. 2014). In Brazil, all the pinniped species have been under protection since 1986 by law (Portaria SUDEPE n0 N-11, de 21-02-1986) and also by the National Action Plans for Conservation of Brazilian Aquatic Mammals (IBAMA 2001, Rocha-Campos et al. 2011).  South American Sea Lions have also been afforded protection by the establishment of numerous reserves and marine protected areas (MPAs), including privately owned sites.

Engel et al. (2014) suggested that the participation of fishermen will be essential to develop real strategies for sustainable tourism and for the future management plan of any marine protected area (MPA) with South American Sea Lions. According to the authors the future management plans should include: (1) environmental education that highlights the ecological importance of the MPA; (2) campaigns that highlight the potential sustainable use of the area for ecotourism; and (3) transforming the Sea Lion to a flagship species of the region. Finally, it is important that all these strategies be targeted to all groups (e.g., tourists, local children, and politicians), and not only for the fishing community.

Questions? Comments? Suggestions? Additions?
Please contact The Virtual Zoo Staff


You are visitor count here since 21 May 2013

page design & content copyright © 2025 Andrew S. Harris

return to virtualzoo.org home

This page reprinted from http://www.virtualzoo.org. Copyright © 2025 Andrew S. Harris.

The Virtual Zoo, San Jose, CA 95125, USA